
Polynomial-Time 

Combinatorial 

Bandits

Computationally Tractable Reinforcement 
Learning in Complex Environments

Thibaut Cuvelier



Combinatorial bandits

▪ Machine learning: how do computers learn from data?

▪ Supervised learning: static relation between given input and output

▪ Sample task: predict the traffic on A6 highway

▪ Data: previous traffic measurements

▪ Reinforcement learning: act in an environment

▪ Sample task: play a video game

▪ Data: actions taken in the game, final score

► Take sequential decisions based on experience

▪ Combinatorial bandits: special case of reinforcement learning 
where decisions have a structure

▪ Sample task: choose a route from home to work

▪ Data: time taken the previous days, corresponding paths

2



Combinatorial bandit: navigator systems

▪ How do systems like Waze determine the best paths? 

▪ Easy to do once the congestion is known everywhere!

▪ The catch: how to know the congestion? 

▪ Send drivers on the roads to estimate the congestion!

▪ Exploration-exploitation dilemma:

▪ A driver that “explores” a poor path may be unsatisfied

▪ A driver that benefits from the others’ exploration is satisfied

▪ Formulate this problem as a combinatorial bandit

▪ An action is a path from the user’s position to their destination

▪ The combinatorial set is the set of paths in the graph of roads

3



Combinatorial bandits: some vocabulary
▪ A bandit algorithm plays actions in a combinatorial set 𝒳

▪ Path in a graph: Waze, computer-network routing

▪ Matching: display ads on a Webpage

▪ Playing an action yields some (random) reward

▪ Matching: 1 if user clicks, 0 otherwise

▪ Path in a graph: inverse of time to traverse a road

▪ Actions are composed of d subarms

▪ Path in a graph: edges of the graph (e.g., roads, network link)

▪ Matching: association between two nodes (e.g., ad position and content)

▪ For each bandit problem, there is an optimum action

▪ The difference in reward between one played action and the optimum action 
is the gap (symbol: Δ)

▪ The total difference in reward between all your actions and playing the 
optimum action all the time is the regret

4



Why are combinatorial bandits hard?
▪ Combinatorial problems are hard

Goal: find the best solution for known costs

▪ Many interesting exceptions, though: 

▪ Shortest path: network routing, GPS navigators

▪ Matchings: matchmaking

▪ Uncertain combinatorial problems are extremely hard

Goal: find the best solution for unknown costs

▪ Major tool: nonlinear combinatorial optimisation

▪ Close to no exceptions… in general

▪ Up to now, general belief that there is a trade-off between 
time complexity and regret performance

5



Outline
▪ AESCB: a first state-of-the-art algorithm

▪ GLPG: reaching the lower bound

▪ The underlying optimisation algorithms

6



ESCB: combinatorial bandits with 

confidence sets

▪ General technique for reinforcement learning: 
play the action with the largest upper bound on the reward

▪ Combination of the average reward and a confidence bonus

▪ “Optimism in the face of uncertainty”

▪ One example for combinatorial bandits: ESCB

max
𝒙∈𝒳

𝜽𝑇𝒙 + 𝒕𝑇𝒙

7

Find a

combinatorial

solution 

maximising…
… the average 

reward…

… and the

confidence

bonus

Close to the true value if played a lot

Potentially far off if barely played

Low for actions played a lot

High for actions barely played



AESCB: an efficient implementation
▪ Even for easy combinatorial problems, ESCB cannot be 

implemented efficiently (“in polynomial time”)

▪ Idea: approximate the problem with budgeted 
optimisation

▪ Budget s: value for the nonlinear term

▪ Effect: linearises the objective as a constraint
max 𝜽𝑇𝒙

subject to 𝒕𝑇𝒙 ≥ 𝑠

𝒙 ∈ 𝒳

Two problems:

▪ Which values for the budget?

▪ How to solve budgeted problems?

8



AESCB: an efficient implementation
Two problems:

▪ Which values for the budget?

▪ Only allow integers as coefficients 

►Use scaling and rounding!

▪ How to solve budgeted problems?

▪ Write a dedicated algorithm for each combinatorial problem

▪ This technique works well for many problems: 
knapsacks, shortest paths, spanning trees, matchings, etc.

▪ The dedicated algorithm is sometimes exact, at least approximate
▪ The approximation factor has a constant impact on the regret

9



AESCB in practice

▪ AESCB is successful in practice if: 

▪ It runs faster than ESCB

▪ It runs much faster than ESCB in large dimensions

▪ Its regret is close to that of ESCB (slightly worse due to 
approximation)

▪ Compare it to an advanced implementation of ESCB

▪ Use the nonlinear features of CPLEX (MISOCP), a state-of-the-art 
optimisation solver

▪ Standard formulation of the combinatorial sets

▪ Also compare to other algorithms: CUCB and Thompson 
sampling (TS)

▪ Faster, but poorer performance guarantees than (A)ESCB

10



AESCB in practice: runtime

▪ In low dimension, both ESCB and AESCB run too fast

▪ Thus, in higher dimension: 

▪ AESCB is always faster!

11

Combinatorial set ESCB AESCB

At most 16 elements 

among 50

1.24 ± 0.03 s 0.10 ± 0.03 s

Path in a 190-node 

graph

0.11 ± 0.04 s 0.05 ± 0.00 s

Spanning tree in a 

190-node graph

0.20 ± 0.03 s 0.04 ± 0.01 s

Matching in a 25-25-

bipartite graph

0.26 ± 0.06 s 0.18 ± 0.01 s



AESCB in practice: regret

▪ And in terms of regret? 

12

Spanning treeMatching

▪ Thompson sampling has a very high variance

▪ CUCB is the worst algorithm

▪ AESCB is extremely close to ESCB



Distinguish 

optimum 

solutions from 

others

GLPG: asymptotically optimal 

combinatorial bandits 
▪ A technique that is very specific to bandit problems

▪ In the long term, what is the minimum degree of exploration needed 
to ensure that only the best solutions are played?

▪ Based on a mathematical property of the problem called the 
Graves-Lai bound

min 

𝒙∈𝒳

𝛼𝒙 Δ𝒙

subject to 

𝑖=1

𝑑
𝑥𝑖

σ𝒚∈𝒳 𝑦𝑖 𝛼𝒚
≤ Δ𝒙

2 ∀𝒙 ∈ 𝒳

𝛼𝒙 ≥ 0 ∀𝒙 ∈ 𝒳

13

Gap of xFrequency to play x

Total regret



The Graves-Lai bound

▪ Intuitive meaning: 

▪ If you explore less than this: you might think a solution is optimal 
when it is not

▪ If you explore more than this: too much regret for the same level of 
confidence you have found the optimum solution

▪ Computational problems: 

▪ Large number of variables

▪ Large number of constraints (but convex)

▪ GLPG to the rescue!

14



The crux of GLPG

▪ The Graves-Lai problem has a lower intrinsic dimensionality

▪ Change variables: use subarm frequency as variables

▪ Use a nonsmooth constraint: instead of many smooth constraints
More precisely: replace ∀ by max

▪ The new formulation: 

min 𝒒𝑇 𝒘

subject to max
𝒙∈𝒳



𝑖=1

𝑑
𝑥𝑖
𝑤𝑖

− Δ𝒙
2 ≤ 0

𝑴𝒘 = 𝟎

15



GLPG: projected subgradient

Final algorithm: 

▪ Penalise the nonsmooth constraint

▪ If the weight λ is large enough, the constraint will be satisfied

▪ New problem: convex nonsmooth objective, linear constraints

min 𝒒𝑇 𝒘+ 𝜆 max
𝒙∈𝒳



𝑖=1

𝑑
𝑥𝑖
𝑤𝑖

− Δ𝒙
2

+

subject to 𝑴 𝒘 = 𝟎

▪ Use a projected subgradient method

16



GLPG: complexity

Three important parts to guarantee a polynomial time complexity: 

1. Evaluate the objective function and a subgradient

▪ Use the same technique as ESCB!

2. Convergence of the subgradient method

▪ We slightly generalise known convergence results 

▪ Approximate budgeted optimisation is not a problem

3. Convergence of the projection operator

▪ Minimise a smooth convex objective with linear constraints

▪ Known result from the literature (e.g., interior-point method)

17



GLPG in practice

▪ GLPG is successful in practice if: 

▪ It runs fast (but not as fast as AESCB)

▪ Its result is close to the true value of the Graves-Lai bound
(considering the approximation ratio, if need be)

▪ Compare it to an advanced implementation of the 
Graves-Lai bound

▪ Work on the reformulation with fewer variables

▪ Use the nonlinear features of CPLEX (SOCP), a state-of-the-art 
optimisation solver

▪ Constraint generation for the many convex constraints

▪ Compare to GLPG with a bundle method

▪ Converges faster than the subgradient method

18



GLPG in practice: convergence speed
▪ How fast does GLPG converge? 

▪ Each subgradient/bundle iteration brings it closer to the optimum

19

Choose one element among two Matching in a 2-2-bipartite graph

►Converges in few iterations (especially bundle)

►Approximation in the budgeted subproblem is not an issue



Optimising a class of nonlinear 

functions

▪ Both AESCB and GLPG rely on the same subproblem:

▪ A new approximation scheme for a class of nonlinear combinatorial 
optimisation problems

▪ Based on the building block of budgeted linear optimisation

▪ Considered objective functions: 

𝑓 𝒙 = 𝒂0
𝑇 𝒙 +

𝑖

𝑓𝑖 𝒂𝑖
𝑇 𝒙

▪ Where the 𝑓𝑖 are invertible unary functions (i.e. not necessarily 
convex or concave)

▪ By itself, our approximation scheme does not always yield 
polynomial-time algorithms!

20



Optimising a class of nonlinear functions

▪ Consider that the 𝑓𝑖 are increasing

▪ Our “decomposition” technique: 

▪ Find the range of values for the 𝑓𝑖

▪ Discretise this range (up to some precision ε): 

ϕ𝑖
′ ↦ ε

𝜙𝑖
ε

▪ Optimise a series of budgeted problems: 
max 𝒂0

𝑇 𝒙

subject to 𝒂𝑖
𝑇 𝒙 ≥ 𝑓𝑖

−1 ϕ𝑖
′ , ∀𝑖

𝒙 ∈ 𝒳
iterating over the values of ϕ𝑖

′ for each nonlinear term i

21



Optimising a class of nonlinear functions

▪ When does this scheme yield a polynomial-time algorithm?

▪ If the range of values for ϕ𝑖
′ is bounded by a polynomial

▪ If optimising the budgeted problem can be done in polynomial time

► Many interesting cases where both happen!

▪ For instance: knapsacks

▪ Pick any number of items (total weight less than a fixed threshold) 
to maximise the total value of the chosen items

▪ Standard technique: dynamic programming

𝑚𝑖,𝑤 = max 𝑚𝑖−1,𝑤 , 𝑣𝑖 +𝑚𝑖−1,𝑤−𝑤𝑖

22

Maximum 

value: items 1 

to i, 

maximum 

weight w Don’t take item i Take item i

Value of 

item i

Weight 

of item i



Optimising a class of nonlinear functions

▪ Standard technique for knapsacks: 

𝑚𝑖,𝑤 = max 𝑚𝑖−1,𝑤 , 𝑣𝑖 +𝑚𝑖−1,𝑤−𝑤𝑖

▪ Generalised algorithm for one budget: 

𝑚𝑖,𝑤,𝑠 = max 𝑚𝑖−1,𝑤,𝑠 , 𝑣𝑖 +𝑚𝑖−1,𝑤−𝑤𝑖,𝑠−𝑠𝑖

▪ .

▪ When the weights and budgets are properly bounded 
integers, the time complexity is polynomial

23

Don’t take item i Take item i

Maximum 

value: items 1 

to i, maximum 

weight w, 

minimum 

budget s

Budget 

of item i



Conclusion

▪ Combinatorial bandits are a hard computational problem

▪ AESCB is a fast algorithm that achieves very low regret

▪ GLPG allows to compute the lower bound in polynomial 
time

▪ It can be used to power bandit policies like OSSB 

▪ We solve the computational aspects of combinatorial 
bandits with a novel methodology for nonlinear optimisation

▪ Based on the concept of budgeted optimisation

24



References
▪ ESCB:

Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, and Alexandre 
Proutière. Combinatorial bandits revisited. In Advances in Neural Information 
Processing Systems, pages 2116–2124, 2015

▪ AESCB:
Thibaut Cuvelier, Richard Combes, and Éric Gourdin. Statistically Efficient, 
Polynomial-Time Algorithms for Combinatorial Semi-Bandits. In ACM 
SIGMETRICS 2021, Beijing (China), 2021

▪ OSSB:
Richard Combes, Stefan Magureanu, and Alexandre Proutiere. Minimal 
exploration in structured stochastic bandits. In Advances in Neural Information 
Processing Systems, pages 1763–1771, 2017

▪ GLPG:
Thibaut Cuvelier, Richard Combes, and Éric Gourdin. Asymptotically optimal 
strategies for combinatorial semi-bandits in polynomial time. In Algorithmic 
Learning Theory 2021

▪ GLPG numerical results:
Thibaut Cuvelier. Polynomial-Time Algorithms for Combinatorial Semibandits: 
Computationally Tractable Reinforcement Learning in Complex 
Environments. CentraleSupélec (université Paris-Saclay)

25



26


