Introduction to Intelligent Robotics INF00948

Organization (Spring 2017)

Contacts: <u>L.Wehenkel@ulg.ac.be</u> (coordination) <u>tcuvelier@ulg.ac.be</u> (projects)

Website:

http://www.montefiore.ulg.ac.be/~tcuvelier/ir

Lecture room/timing: R18, B28 (Institut Montefiore)/8:30 AM

Today's Plan

History of robotics
Today's robots
What's missing?

4. Practical information

Robots in our Imagination

Brief History of Robotics

1921: Karel Capek invents the term "Robot" in "Rossum's Universal Robots"

1961: Devol and Engelberger's first industrial robot

1996: Honda presents the first humanoid robot

1961: Devol and Engelberger's first industrial robot

https://www.youtube.com/watch?v=eAb6cB-gklY

1996: Honda presents the first humanoid robot

http://www.youtube.com/watch?v=d2BUO4HEhvM

HRP-4

NAO

Ishiguro Androids, (ATR, University of Osaka)

Justin (DLR, Germany)

PR2 (Willow Garage) (video: 50x)

GRASP Lab (UPENN)

Big Dog (Boston Dynamics)

Wild Cat (Boston Dynamics)

Big Dog (Boston Dynamics)

RLL, MPI Tübingen

LASA, EPFL

CLMC, USC

CVAP, KTH

CVAP, KTH

iRobot

Discussion

We have the technology to **build** humanoid robots. Why don't we see more of them in our everyday life?

Mainly, because to date, we do not have a generic way of creating motor skills. Motor skills need to be learned by the robot.

Contents

Basics: SE(3) geometry, sensors, actuators, controllers, kinematics.

Mobile robots: Locomotion, localization, navigation, SLAM.

(Arms and grippers: Reaching, grasping, grasp learning.)

Computer Vision: Feature extraction (Edge, Harris), Fitting (Ransac, Hough), Tracking (Kalman, Nonparametric), Object recognition (PCA, probabilistic model)

Objectives

At the end of this course, you will be able to solve the following problems:

- I. Extract information from video streams (object/people identity/position, body postures, 3D room and object structures)
- 2. Infer a useful behavior from sensory data (navigation, grasping; via optimization, machine learning, or control)
- 3. Generate a set of robot commands that implement the desired behavior.

Group Project

You will program a robotic agent that processes images, plans a task based on the image data, and executes a set of motor commands that complete the task.

The robot will be simulated in the V-REP simulator.

Book

The course is based on the book Robotics, Vision and Control: Fundamental Algorithms in MATLAB, by Peter Corke, published by Springer in 2011.

http://www.petercorke.com/RVC/

Course Language

Course language will be English.

- ... why?
 - Knowing the proper terminology is essential!
 - All robotics literature is in English.

Emails & projects may be written in French. However, this is not encouraged.

Posts to the forum must be written in English.

Provisional plan (2017)

Feb 9	Chap I (LWehenkel); Chap 2 (A Lejeune)
Feb 16	Chap 3-4 (B Boigelot); Project info (T Cuvelier)
Feb 23	Chap 4-5 (B Boigelot)
Mar 2	Chap 6 (LWehenkel)
Mar 9	Chap I0 (P Latour)
Mar 16	Project Q&A session (T Cuvelier)
Mar 23	Group Project: Milestone 1a deadline
Mar 30	Chap II (MVan Droogenbroeck)
Apr 20	Chap 12 (LWehenkel)
Apr 27	Seminar: Montefiore Projects
May 31	Deadline for submitting final projects
June	Project Presentations
Loc/Time	RI8-B28 8:30 AM

Plan: Examination & Grading

No Exam!

Group Project:

- Presentation 1:25%
- Presentation 2:75%