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Today’s Plan 

1. History of robotics	
2. Today’s robots	
3. What’s missing?	
 

4. Practical information



Robots in our Imagination 



Brief History of Robotics 
1921: Karel Capek invents the term “Robot” 
in “Rossum’s Universal Robots”

1961: Devol and Engelberger’s 
first industrial robot

1996: Honda presents the first 
humanoid robot



1961: Devol and Engelberger’s first industrial robot 

https://www.youtube.com/watch?v=eAb6cB-gklY



1996: Honda presents the first humanoid robot

http://www.youtube.com/watch?v=d2BUO4HEhvM



Humanoid Robots Today 

HRP-4

NAO

ASIMO



Humanoid Robots Today 
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Humanoid Robots Today 

ASIMO



Humanoid Robots Today 

NAO



Other Robots 

Ishiguro Androids,  (ATR, University of Osaka)



Other Robots 

Justin (DLR, Germany)



Other Robots 

PR2 (Willow Garage) (video: 50x)



Other Robots 

GRASP Lab (UPENN)



Other Robots 

Big Dog (Boston Dynamics)



Other Robots 

Wild Cat (Boston Dynamics)



Other Robots 

Big Dog (Boston Dynamics)



Back to (Partly-) Humanoid Robots 

RLL, MPI Tübingen



Back to (Partly-) Humanoid Robots 

LASA, EPFL
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Compressing Grasping Experience into a Dictionary of

Prototypical Grasp-predicting Parts

Renaud Detry Carl Henrik Ek Marianna Madry Danica Kragic

Abstract— We present a real-world robotic agent that is

capable of transferring grasping strategies across objects that

share similar parts. The agent transfers grasps across objects

by identifying, from examples provided by a teacher, parts

by which objects are often grasped in a similar fashion. It

then uses these parts to identify grasping points onto novel

objects. We focus our report on the definition of a similarity

measure that reflects whether the shapes of two parts resemble

each other, and whether their associated grasps are applied

near one another. We discuss a nonlinear clustering procedure

that allows groups of similar part-grasp associations to emerge

from the space induced by the similarity measure. We present

an experiment in which our agent extracts five prototypical

parts from thirty-two grasp examples, and we demonstrate the

applicability of the prototypical parts for grasping novel objects.

I. INTRODUCTION

This paper addresses the problem of robotic grasp planning
– we present a method that allows a robot to compute,
from a single object snapshot, the position, orientation, and
preshape to which it needs to bring its manipulator in
order to grasp the object. A substantial challenge in grasp
planning is to generate workable finger placements while one
finger or more must unavoidably be applied onto surfaces
that are behind the object, and thus not perceived by the
robot. To address this problem, planning algorithms usually
exploit prior object knowledge in order to postulate the
shape of occluded regions and devise a workable strategy.
For instance, when working in controlled environments,
we can provide robots with 3D shape models and grasp
parameters for every object. From a single snapshot, the
robot can recognize and estimate object poses, which leads
to a reconstruction of occluded faces and the generation
of accurate grasps. However, when robots are deployed in
uncontrolled environments such as houses or hospitals, hard-
coding grasping strategies for every object that the robot may
encounter quickly becomes unpractical. In order to work with
unknown objects, assumptions on shape regularity, such as
symmetry [6], [22], [37], may be used to fill occluded regions
and properly formulate finger placements. Unfortunately,
there is no guarantee on the extent to which such assumptions
apply.
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(a) Training set (b) Grasp Examples

(c) Prototypes

(d) Testing set (e) Grasping a novel object

Fig. 1: Transferring grasps to novel objects. From grasps
demonstrated on a set of training objects (Figures (a) and
(b)), the agent extracts a dictionary of prototypes (Figure
(c)). These prototypes allow the agent to grasp novel objects
that are partly similar to the training objects, such as those of
Figure (d). Figure (e) shows an example of the application
of the fifth prototype to an object whose global shape is
unlike any of the training objects, but that present a part that
resembles the fifth prototype.

In order to overcome the limitations associated to hard-
coded means of predicting 3D shapes, authors have increas-
ingly looked for means of extracting from experimental data
a mapping that links visual cues to grasp parameters. This
way, a robot can acquire experience and progressively learn
to grasp new kinds of objects [10], [23], [29], [30].

In this paper, we present a method that allows a robot
to learn to formulate grasp plans from visual data obtained
from a 3D sensor. Our method relies on the identification
of prototypical parts by which objects are often grasped. To
this end, we provide the robot with means of identifying,
from a set of grasp examples, the 3D shape of parts that
are recurrently observed within the manipulator during the
grasps. Our approach effectively compresses the training
data, generating a dictionary of prototypical parts that is
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Discussion 

We have the technology to build humanoid 
robots. Why don’t we see more of them in our 
everyday life?	
 

Mainly, because to date, we do not have a generic 
way of creating motor skills. Motor skills need to 
be learned by the robot.



Contents 

Basics: SE(3) geometry, sensors, actuators, controllers, 
kinematics.	
 

Mobile robots: Locomotion, localization, navigation, SLAM.	
 

(Arms and grippers: Reaching, grasping, grasp learning.)	
 

Computer Vision: Feature extraction (Edge, Harris), Fitting 
(Ransac, Hough), Tracking (Kalman, Nonparametric), Object 
recognition (PCA, probabilistic model)



Objectives 

At the end of this course, you will be able to solve the 
following problems:	
 

1. Extract information from video streams (object/people 
identity/position, body postures, 3D room and object 
structures)	

2. Infer a useful behavior from sensory data (navigation, 
grasping; via optimization, machine learning, or control)	

3. Generate a set of robot commands that implement the 
desired behavior.



Group Project 
You will program a robotic agent that processes images, 
plans a task based on the image data, and executes a set 
of motor commands that complete the task. 	
 

The robot will be simulated in the V-REP simulator.



Book 

The course is based 
on the book 
Robotics, Vision and 
Control: Fundamental 
Algorithms in 
MATLAB, by Peter 
Corke, published by 
Springer in 2011. 

http://www.petercorke.com/RVC/



Course Language 

Course language will be English.	
 

... why?	
• Knowing the proper terminology is essential!	
• All robotics literature is in English.	

 

Emails & projects may be written in French. 
However, this is not encouraged.	
 

Posts to the forum must be written in English.



Provisional plan (2017) 
Feb 9	
 

Chap 1 (L Wehenkel); Chap 2 (A Lejeune)

Feb 16 Chap 3-4 (B Boigelot); Project info (T Cuvelier)

Feb 23 Chap 4-5 (B Boigelot)

Mar 2 Chap 6 (L Wehenkel)

Mar 9 Chap 10 (P Latour)

Mar 16 Project Q&A session (T Cuvelier)

Mar 23 Group Project: Milestone 1a deadline

Mar 30 Chap 11 (M Van Droogenbroeck)

Apr 20 Chap 12 (L Wehenkel)

Apr 27 Seminar: Montefiore Projects

May 31 Deadline for submitting final projects

June Project Presentations 

Loc/Time R18-B28 8:30 AM 



Plan: Examination & Grading 

No Exam!	
 

Group Project:	
- Presentation 1: 25%	
- Presentation 2: 75%


