
Open-source Contributions to Julia, a Scientific
Programming Language, for Mathematical

Optimisation

13th April 2016

In the world of programming languages, those that have good runtime per-
formance (like C or Fortran) rarely have nice dynamic features, whereas lan-
guages that offer a better programmer productivity (like MATLAB or Python)
lack performance. Julia is a newcomer in the field of scientific and technical
computations that has a productivity-oriented syntax, but closely matches the
performance of lower-level languages like C.

Julia also has a strong community for mathematical optimisation, named
JuliaOpt. It has developed a series of packages to propose a state-of-the-art
environment for mathematical programming, mainly several interfaces to ex-
isting solvers (MathProgBase.jl), and two modelling layers (JuMP.jl for general
cases, Convex.jl for convex programming). Another JuliaOpt package, Optim.jl,
provides full Julia implementation of optimisation algorithms, which can better
handle Julia’s peculiarities than external solvers (in particular, it can exploit
properties in linear algebra not exposed through standard libraries, which could
improve performance and scaleability).

This environment can be further developed with other contributions, such
as:

• Implementation of missing optimisation algorithms in Optim.jl, especially
for constrained optimisation or convex programming, such as interior point
or dual methods, or sequential techniques (SQP, SLP), or less-known al-
gorithms. The performance of the implementation should be compared to
existing solutions in other environments.

• Generic modelling for optimisation under uncertainty, as an extension to
JuMP.jl. Currently, the two main paradigms to add uncertainty into math-
ematical programs are implemented in Julia (stochastic programming with
StochJuMP.jl, robust programming with JuMPeR.jl); however, practition-
ers have a hard time to switch from one paradigm to another and see which
one is the best suited to their needs. The goal would be to see how far
both paradigms can share a modelling interface.

1

http://julialang.org/
https://github.com/JuliaOpt
https://github.com/JuliaOpt/MathProgBase.jl
https://github.com/JuliaOpt/JuMP.jl
https://github.com/JuliaOpt/Convex.jl
https://github.com/JuliaOpt/Optim.jl
https://github.com/JuliaOpt/Optim.jl
https://github.com/JuliaOpt/JuMP.jl
https://github.com/joehuchette/StructJuMP.jl
https://github.com/IainNZ/JuMPeR.jl


• DAE modelling as an extension to JuMP.jl. Many problems in engineering
use differential equations, including when optimising some parameters.
However, there is no modelling layer for these differential equations to
date which is integrated in Julia packages. Other modelling packages such
as Pyomo have such functionalities (with an implementation based on the
discretisation of the equations), which could be ported to JuMP.jl.

Any of those three subjects is a candidate for a master’s thesis.
The proposed master’s theses would take the form of open-source contri-

butions to existing Julia packages or to new open-source libraries. Previous
knowledge of the language is appreciated, but is not mandatory.

Feel free to propose other kinds of contributions to the Julia environment!

2

https://github.com/JuliaOpt/JuMP.jl
https://software.sandia.gov/downloads/pub/pyomo/PyomoOnlineDocs.html#_dae_toolbox

