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Operations research?

Machine learning: how do | predict the amount of sales for Christmas 20237
Nice. What do you do with that? A dashboard?
How to bring that product efficiently to clients? Use operations research! .

Other questions:

How to get the largest amount of treats in a minimum amount of time for Halloween?
From which distribution centres should you serve the demand?

How many trucks to serve a given neighbourhood?

How to pack parcels in a truck?

Where to build a new distribution centre?

How many machines of what type for a new data centre and future computational load?



Operations research: what does it look like?

* Typically, your problem will have:
* Decision variables: actions you can take
* Objective function: minimise the cost, maximise the reliability, etc.
* Constraints: demand to fulfil, technical possibilities, etc.
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Why uncertainty in optimisation?
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Source: https://imgflip.com/i/g8fjq 4



Why uncertainty in optimisation?

* Small perturbations can lead to highly infeasible solutions

e NETLIB data set (PILOT4): % change (log scale)
* 0.1% change in a coefficient 1000000
* 210,000% constraint violation 100000
10000
1000
100
10
Source: A. Ben-Tal, L. E. Ghaoui, and 1
A. Nemirovski. Robust Optimization. 2009 ] o
(introduction) Data perturbation Infeasibility

0.1



A Journey through
Uncertain Optimisation

How to model uncertainty?

e How to scale uncertain models?

* How to learn from the uncertainty?

How to use uncertainty to solve faster?



How to model
uncertainty?



How to model uncertainty?

Two major approaches:

* Based on probabilities: stochastic optimisation
* Oldest: dates back from 1955 e
* Use a probability distribution for the uncertain parameters ‘
* Optimise for the average cost, the 95th percentile, etc.
* Discretise based on scenarios

* Based on uncertainty sets: robust optimisation
* Inspired by game theory
* Define the plausible values for the uncertain parameters

* Optimise for the worst-case scenario in the set of plausible values
* Designed to be computationally lighter than stochastic optimisation

Source: https://en.wikipedia.org/wiki/File:Multivariate_Gaussian.png 8



Example: capacitated facility location

* Decision variables: open a distribution centre (DC) i, x;

O
O

Objective: minimise the costs of opening DCs and @

serving cities -
»

* Dependent variables: serve a city j from a DC i, y;

* Data:
* Demand for each city - Cost to serve a city from a DC
* Capacity for each DC « Cost to opena DC

Constraints: Q

* Serve demand from open DC only up to their capacity

Cl
* Don’t exceed the DC capacities

20XX Pitch Deck O 9



Example: capacitated facility location

min D ikt ), ) e
i I |

s. t. Z i j < capacity; x;, for all DCs i
J

z Yy j = demand;, for all cities j




Example: capacitated facility location

e Stochastic model: several demand scenarios

* “Here and now” decisions: which DCs to open now O
* “Wait and see” decisions: amounts from DCs to cities O
* Minimise expected cost Q

* Represent probability distribution with scenarios (index: s)

S Yy S
i S i

s. t. z Vi j < capacity; x;, for each DC i, for each scenario s

4
O

C1l
,
Z y; ; = demand;, for each city j, for each scenario s
i
x; € {0,1} Q



Example: capacitated facility location

* Robust model: one uncertainty set per city
* Soyster (“box”) set: demand; € (dem;j, demj] O
* Worst case: every city has the maximum demand, dem; O Q

-
i P

s. t. Z Yy j < capacity; x;, for all DCs
J

O

C1l
Z Vij 2 demj, for all cities j O




Case study: water-reservoir management

How to manage a

The Netherlands

water reservoir in a e
very risk-averse way?
* Uncertainty: rain REESI
.ue(N\e°Se
* Expected result: a new “‘ e
minimum-water-depth piver
France Ourthe X ‘ = YRiVaE Het
rule curve Germany Aol - LAY TR TP Sir
. . Luxembourg . 4' . '3 caéoy:kZm/s)
* Major constraint: 0 50 00 150km —
drinking water supply for Total drainage area ~ 100+ km?

two years, whatever the
weather conditions
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Case study: water-reservoir management

River Vesdre
I
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* Special trick: receding horizon =
control 2
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Case study: water-reservoir management

* Data augmentation: merging and mixing
e Based on hydrological years (starting in October)

* Always keep intra-year correlations

17 scenarios inter-annual correlations v’
V) 1121 3
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8,000 scenarios inter-annual correlations %
3 1 2
oo
c
"% 2 1 3
= 1 3 2




Case study: water-reservoir management

* Mixing requires the deepest water levels

* Robust evaluation of stochastic solutions: closest confidence interval

—
o

Stochastic model, merge scenario generation
Stochastic model, mix scenario generation
Robust model, confidence interval at 96.5%
Robust model, confidence interval at 97.5%

Robust model, confidence interval at 98%
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Case study: water-reservoir management

Stochastic evaluation: what scenario contributes to each point on the rule curve?
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Case study: network optimisation

* Given: a network topology and pairs of
nodes that communicate

* How to route the traffic while having the
lowest congestion?

* Formally: minimise the maximum load in the
network

* Load: throughput divided by capacity
* Source of uncertainty: traffic!

* Not easy to forecast

* Patterns evolve over time: Netflix, large-scale
ML, etc.

* Bonus points: don’t change the routing too
often

18



Case study: network optimisation

* Major problem: optimising the routing without uncertainty
is not easy

* How to model uncertainty?
* Scenarios? Quickly very costly to solve!
* Robust? Hard to cover the interesting cases!
* Oblivious? Cover all cases!

* Oblivious routing: best congestion whatever the traffic
conditions

* Theoretical guarantee: performance compared to the best routing
for given conditions




How to solve
uncertain
problems at
scale?



How to solve uncertain problems at scale?

Solving uncertain problems can be hard:
* Stochastic: extremely large

* Robust: no longer linear
How to improve the running times?

* Stochastic optimisation: decomposition along scenarios
* Exact: Benders’ decomposition
* Approximate: progressive hedging

* Robust optimisation: rewrite the worst-case scenario
* |terative process: determine one worst-case scenario at a time
* Reformulation: implicitly characterise the worst-case scenario



Capacitated facility location

Instances solved

10f
B: —— Deterministic model (average scenario)

[ Deterministic equivalent
6l —— Progressive hedging

[ —— Benders' decomposition
4L . oy

—— Multicut Benders' decomposition
oL —— Robust model
L | ' L | L L 1 L i L L 1 L X L L L | Size
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Time limit: two hours
Loo-ellipsoid
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108 ¢
105§
104§

1000 }

100 2

Oblivious routing: numerical results
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dual reformulation

dual reformulation
with column generation

cutting planes

cutting planes
with column generation

trend line for dual reformulation

trend line for dual reformulation
with column generation

trend line for cutting planes

trend line for cutting planes
with column generation

time limit of one hour

23



How to learn from
the uncertainty?



Combinatorial bandits

* Combinatorial bandit: solve an optimisation
problem without knowing the costs

* Many applications:

* Choose the ads to display:
online knapsack/matching

* Find your way in a transit network:
online shortest path

* Schedule work on unreliable machines:
online machine scheduling

25



Combinatorial bandits

What algorithms can you use?

* Time to make a decision: computational complexity
* Low: solve one combinatorial problem (possibly polynomial time)

* Medium: solve one modified combinatorial problem (possibly polynomial time)
* High: exponential time in all cases

 Number of rounds before learning the real costs (“regret”): sample efficiency

* Low: asymptotically suboptimum, 0(\/7) or worse
* High: O(InT) or asymptotically optimum

Name Complexity Sample efficiency

Thompson sampling Low © Low ®
CUCB Low © Low ®
ESCB, OSSB High ® High ©
AESCB, GLPG Medium ©@ High ©




AESCB, high efficiency in polynomial time

* Why are combinatorial bandits hard?
You need to solve a nonlinear optimisation problem in polynomial time:

max ulx ++/xTo?
xXe

: inverse of the number of times an arm is played (akin to a variance)

* J: average reward
e g2

* Major idea: use budgeted combinatorial problems with a threshold t

max u’ x such thaty/xTa?2 >t
XEX

* How to solve a budgeted combinatorial problem in polynomial time?
* Integer coefficients (rounding)
* Dynamic programming
» It works for knapsacks, shortest paths, spanning trees, matchings, etc.



AESCB: high efficiency in polynomial time

250
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AESCB: high efficiency in polynomial time

Combinatorial set

At most 16 elements
among 50

Path in a 190-node graph

Spanning tree in a 190-
node graph

Matching in a 25-25-
bipartite graph

ESCB through CPLEX

1.24 £ 0.03 s

011 £ 0.04 s

0.20 £ 0.03 s

0.26 + 0.06 s

AESCB

010+ 0.03s

0.05 £ 0.00 s

0.04 £ 0.01s

018 £ 0.01s



GLPG, optimum efficiency in polynomial time

* Based on a mathematical property of the problem: the Graves-Lai bound

* In the long term, what is the minimum degree of exploration needed to ensure that only
the best solutions are played?

|

min S: Xx Ax Total regret
XEX

d
. Xi 2
subject to <A; VxeX
= Zyex Yi @y

ay =0 Vx e X

S




GLPG, optimum efficiency in polynomial time

* Intuitive meaning:
* |f you explore less than this: you might think a solution is optimal when it is not

* |If you explore more than this: too much regret for the same level of confidence you have
found the optimum solution

* Computational problems:
* Large number of variables — exponential
* Large number of constraints (but convex) — exponential

* GLPG to the rescue!

31



GLPG, optimum efficiency in polynomial time

* The Graves-Lai problem has a lower intrinsic dimensionality
* Change variables: use subarm frequency as variables
* Use a nonsmooth constraint instead of many smooth constraints

* Penalise the nonsmooth constraint
* If the weight A is large enough, the constraint will be satisfied

* New problem: convex nonsmoot

min

subject to

q' w+ A

(d

Xi
max -« —_— —
XEX Wi

=l
Mw=20

N objective, linear constraints

+



GLPG, optimum efficiency in polynomial time

bipartite perfect matching

GLPG
25 L GLPG with a bundle method
True value of C(#)
Re()
20 -
< 15
@)
10 -
5 -
0 1 | 1 1 | 1 |
0 10 20 30 40 50 60 70

Subgradient-descent iteration
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How to use
uncertainty to
solve faster?



Source: Providing solution to
last mile challenges in postal
operations. Laseinde, O.T. &
Mpofu, Khumbulani.
International Journal of
Logistics Research and
Applications, 2017

Life of a parcel

A client orders an item from their favourite online store

The store prepares a parcel with this item

The client receives their parcel (hopefully)

A delivery person comes and picks the parcel up and drop it at a warehouse: first mile

The parcel is loaded onto a truck, then another, until it reaches its final warehouse:
middle mile

A delivery person picks the parcel up at the warehouse and delivers it: last mile

FIRST MILE MIDDLE MILE LAST MILE
PR _ N— — | e 7 RECEIVERS
—— ° °
EHH S
- Y
[N | 7
PROCESSING CENTRE : i L
MAIL HUB/EXCHANGE CENTRES !!! . . t‘

DISTRIBUTION CENTRES/LOCAL POST OFFICE ==

e
L 35



Why is middle-mile logistics hard?

* Typical mathematical formulation: multicommodity flow with MIP solvers
* |t does not scale! In one hour: up to 20 warehouses and 400 parcels
* |t does not solve the right problem! Clients would prefer an online system

* How to do better?
e Combinatorial bandits are not appropriate: presence of a state (trucks are not empty)
* Full-fledged reinforcement learning (RL): the principles are a good fit!

* How to ensure solution feasibility?
* Hard to encode constraints in RL
* Careful modelling!



RL modelling for middle-mile logistics

e Consider truck schedules known

* Time-expanded graph: warehouses in one dimension, time in the other

* Edges: either a parcel stays in the current warehouse or moves with a truck
* Nodes: warehouse-time combination, parcel

t = ooo@}p
t=>5 O O O

First-mile Middle-mile Last-mile O Red parcel O Green parcel ® Goal
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RL modelling for middle-mile logistics

* How to make decisions on top of this graph?
* At each time step, advance one parcel for one step
* Choose the best edge according to the learnt value function

* Value function of a state: expected number of delivered parcels
* Input: state graph (hence the use of graph neural networks)
* Node and edge features: truck capacity, parcel weight, distance to goal



RL modelling for middle-mile logistics
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% RL modelling for middle-mile logistics
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Time for questions!

I’m not so sure...
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