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Operations research? 
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• Machine learning: how do I predict the amount of sales for Christmas 2023? 

• Nice. What do you do with that? A dashboard? 

• How to bring that product efficiently to clients? Use operations research! 

• Other questions:

• How to get the largest amount of treats in a minimum amount of time for Halloween?

• From which distribution centres should you serve the demand? 

• How many trucks to serve a given neighbourhood? 

• How to pack parcels in a truck? 

• Where to build a new distribution centre? 

• How many machines of what type for a new data centre and future computational load?

• …

🎃



Operations research: what does it look like?
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• Typically, your problem will have:

• Decision variables: actions you can take

• Objective function: minimise the cost, maximise the reliability, etc.

• Constraints: demand to fulfil, technical possibilities, etc.
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Why uncertainty in optimisation?
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Perfect 

demand 

forecast?

Perfect 

price 

forecast?

Perfect 

travel-time 

forecast?

Perfect human 

implementation?

Source: https://imgflip.com/i/g8fjq



Why uncertainty in optimisation?
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• Small perturbations can lead to highly infeasible solutions

• NETLIB data set (PILOT4):

• 0.1% change in a coefficient

• 210,000% constraint violation

0.1

1

10

100

1000

10000

100000

1000000

Data perturbation Infeasibility

% change (log scale)

Source: A. Ben-Tal, L. E. Ghaoui, and
A. Nemirovski. Robust Optimization. 2009 
(introduction)



A Journey through 
Uncertain Optimisation

• How to model uncertainty? 

• How to scale uncertain models?

• How to learn from the uncertainty?

• How to use uncertainty to solve faster?

20XX Pitch Deck
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How to model 
uncertainty? 



How to model uncertainty? 
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Two major approaches:

• Based on probabilities: stochastic optimisation

• Oldest: dates back from 1955

• Use a probability distribution for the uncertain parameters

• Optimise for the average cost, the 95th percentile, etc.

• Discretise based on scenarios

• Based on uncertainty sets: robust optimisation

• Inspired by game theory

• Define the plausible values for the uncertain parameters

• Optimise for the worst-case scenario in the set of plausible values

• Designed to be computationally lighter than stochastic optimisation

Source: https://en.wikipedia.org/wiki/File:Multivariate_Gaussian.png



Example: capacitated facility location

20XX Pitch Deck
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• Decision variables: open a distribution centre (DC) i, 𝑥𝑖

• Dependent variables: serve a city j from a DC i, 𝑦𝑖,𝑗

• Objective: minimise the costs of opening DCs and 
serving cities

• Data: 

• Demand for each city •  Cost to serve a city from a DC

• Capacity for each DC •  Cost to open a DC

• Constraints: 

• Serve demand from open DC only up to their capacity

• Don’t exceed the DC capacities

DC 1

DC 2

DC 3



Example: capacitated facility location
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Example: capacitated facility location
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• Stochastic model: several demand scenarios

• “Here and now” decisions: which DCs to open now

• “Wait and see” decisions: amounts from DCs to cities

• Minimise expected cost

• Represent probability distribution with scenarios (index: s)
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Example: capacitated facility location
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• Robust model: one uncertainty set per city

• Soyster (“box”) set: demand𝑗 ∈ dem𝑗 , dem𝑗

• Worst case: every city has the maximum demand, dem𝑗
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Case study: water-reservoir management
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How to manage a 
water reservoir in a 
very risk-averse way?

• Uncertainty: rain

• Expected result: a new 
minimum-water-depth 
rule curve

• Major constraint: 
drinking water supply for 
two years, whatever the 
weather conditions

Luxembourg



Case study: water-reservoir management
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• Stochastic approach:

• Use historical inflow data: only 
20 years of measurements

• Upper envelope of the water 
depths

• Robust approach:

• For each week of the year, use 
95% confidence intervals around 
the average inflow

• Special trick: receding horizon 
control

• Solve once per day/week with a 
horizon of two years



Case study: water-reservoir management
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• Data augmentation: merging and mixing

• Based on hydrological years (starting in October)

• Always keep intra-year correlations



Case study: water-reservoir management
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• Mixing requires the deepest water levels

• Robust evaluation of stochastic solutions: closest confidence interval



Case study: water-reservoir management
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Stochastic evaluation: what scenario contributes to each point on the rule curve?



Case study: network optimisation
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• Given: a network topology and pairs of 
nodes that communicate

• How to route the traffic while having the 
lowest congestion? 

• Formally: minimise the maximum load in the 
network

• Load: throughput divided by capacity

• Source of uncertainty: traffic! 

• Not easy to forecast

• Patterns evolve over time: Netflix, large-scale 
ML, etc.

• Bonus points: don’t change the routing too 
often



Case study: network optimisation
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• Major problem: optimising the routing without uncertainty 
is not easy

• How to model uncertainty? 

• Scenarios? Quickly very costly to solve! 

• Robust? Hard to cover the interesting cases!

• Oblivious? Cover all cases!

• Oblivious routing: best congestion whatever the traffic 
conditions

• Theoretical guarantee: performance compared to the best routing 
for given conditions



How to solve 
uncertain 
problems at 
scale?



How to solve uncertain problems at scale?
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Solving uncertain problems can be hard:

• Stochastic: extremely large

• Robust: no longer linear

How to improve the running times?

• Stochastic optimisation: decomposition along scenarios

• Exact: Benders’ decomposition

• Approximate: progressive hedging

• Robust optimisation: rewrite the worst-case scenario

• Iterative process: determine one worst-case scenario at a time

• Reformulation: implicitly characterise the worst-case scenario



Capacitated facility location
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Time limit: two hours

L∞-ellipsoid



Oblivious routing: numerical results
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How to learn from 
the uncertainty?



Combinatorial bandits

25

• Combinatorial bandit: solve an optimisation 
problem without knowing the costs

• Many applications:

• Choose the ads to display:
online knapsack/matching

• Find your way in a transit network:
online shortest path

• Schedule work on unreliable machines:
online machine scheduling



Combinatorial bandits
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What algorithms can you use?

• Time to make a decision: computational complexity
• Low: solve one combinatorial problem (possibly polynomial time)

• Medium: solve one modified combinatorial problem (possibly polynomial time)

• High: exponential time in all cases

• Number of rounds before learning the real costs (“regret”): sample efficiency

• Low: asymptotically suboptimum, 𝒪 𝑇 or worse

• High: 𝒪 ln𝑇 or asymptotically optimum

Name Complexity Sample efficiency

Thompson sampling Low ☺ Low 

CUCB Low ☺ Low 

ESCB, OSSB High  High ☺

AESCB, GLPG Medium  High ☺



AESCB, high efficiency in polynomial time
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• Why are combinatorial bandits hard?
You need to solve a nonlinear optimisation problem in polynomial time: 

max
𝑥∈𝒳

𝜇𝑇𝑥 + 𝑥𝑇𝜎2

• µ: average reward

• 𝜎2: inverse of the number of times an arm is played (akin to a variance)

• Major idea: use budgeted combinatorial problems with a threshold t

max
𝑥∈𝒳

𝜇𝑇𝑥 such that 𝑥𝑇𝜎2 ≥ 𝑡

• How to solve a budgeted combinatorial problem in polynomial time?

• Integer coefficients (rounding)

• Dynamic programming

➢ It works for knapsacks, shortest paths, spanning trees, matchings, etc.



AESCB: high efficiency in polynomial time
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Matching



AESCB: high efficiency in polynomial time
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Combinatorial set ESCB through CPLEX AESCB

At most 16 elements 

among 50

1.24 ± 0.03 s 0.10 ± 0.03 s

Path in a 190-node graph 0.11 ± 0.04 s 0.05 ± 0.00 s

Spanning tree in a 190-

node graph

0.20 ± 0.03 s 0.04 ± 0.01 s

Matching in a 25-25-

bipartite graph

0.26 ± 0.06 s 0.18 ± 0.01 s



GLPG, optimum efficiency in polynomial time
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• Based on a mathematical property of the problem: the Graves-Lai bound

• In the long term, what is the minimum degree of exploration needed to ensure that only 
the best solutions are played?

min ෍

𝒙∈𝒳

𝛼𝒙 Δ𝒙

subject to ෍

𝑖=1

𝑑
𝑥𝑖

σ𝒚∈𝒳 𝑦𝑖 𝛼𝒚
≤ Δ𝒙

2 ∀𝒙 ∈ 𝒳

𝛼𝒙 ≥ 0 ∀𝒙 ∈ 𝒳

Distinguish 

optimum 

solutions from 

others

Gap of x:

average reward of x —

optimum reward

Frequency to play x

Total regret



GLPG, optimum efficiency in polynomial time
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• Intuitive meaning: 

• If you explore less than this: you might think a solution is optimal when it is not

• If you explore more than this: too much regret for the same level of confidence you have 
found the optimum solution

• Computational problems: 

• Large number of variables — exponential

• Large number of constraints (but convex) — exponential

• GLPG to the rescue!



GLPG, optimum efficiency in polynomial time
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• The Graves-Lai problem has a lower intrinsic dimensionality
• Change variables: use subarm frequency as variables
• Use a nonsmooth constraint instead of many smooth constraints

• Penalise the nonsmooth constraint
• If the weight λ is large enough, the constraint will be satisfied

• New problem: convex nonsmooth objective, linear constraints

min 𝒒𝑇 𝒘+ 𝜆 max
𝒙∈𝒳

෍

𝑖=1

𝑑
𝑥𝑖
𝑤𝑖

− Δ𝒙
2

+

subject to 𝑴 𝒘 = 𝟎



GLPG, optimum efficiency in polynomial time
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How to use 
uncertainty to 
solve faster?



Life of a parcel
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• A client orders an item from their favourite online store

• The store prepares a parcel with this item

• A delivery person comes and picks the parcel up and drop it at a warehouse: first mile

• The parcel is loaded onto a truck, then another, until it reaches its final warehouse: 
middle mile

• A delivery person picks the parcel up at the warehouse and delivers it: last mile

• The client receives their parcel (hopefully)

Source: Providing solution to 

last mile challenges in postal 

operations. Laseinde, O.T. & 

Mpofu, Khumbulani. 

International Journal of 

Logistics Research and 

Applications, 2017



Why is middle-mile logistics hard?
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• Typical mathematical formulation: multicommodity flow with MIP solvers

• It does not scale! In one hour: up to 20 warehouses and 400 parcels

• It does not solve the right problem! Clients would prefer an online system

• How to do better? 

• Combinatorial bandits are not appropriate: presence of a state (trucks are not empty)

• Full-fledged reinforcement learning (RL): the principles are a good fit!

• How to ensure solution feasibility?

• Hard to encode constraints in RL

• Careful modelling!



RL modelling for middle-mile logistics
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• Consider truck schedules known

• Time-expanded graph: warehouses in one dimension, time in the other

• Edges: either a parcel stays in the current warehouse or moves with a truck

• Nodes: warehouse-time combination, parcel



RL modelling for middle-mile logistics
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• How to make decisions on top of this graph? 

• At each time step, advance one parcel for one step

• Choose the best edge according to the learnt value function

• Value function of a state: expected number of delivered parcels

• Input: state graph (hence the use of graph neural networks)

• Node and edge features: truck capacity, parcel weight, distance to goal



RL modelling for middle-mile logistics
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RL modelling for middle-mile logistics
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Time for questions!

I’m not so sure… 
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